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Abstract. We address the problem of fitting a Gnedenko distribution to a realization of an IID
sample, thereby deciding upon the heavy/light character of the upper tail of the phenomenon under
study. An illustration based on earthquake magnitude data is supplied.

1. Introduction

The simplest way to apply a stochastic model to some random natural phenomenonE is to
consider its occurrences as so many realizations of independent random variables with identical
CPDF (cumulative probability distribution function)FE . An important feature of this simple
model is the rate at which the complementary distribution function 1− FE(z), which is the
probability that the next occurrence ofE exceeds the valuez, decreases towards zero asz
increases. Indeed, in some applications the whole effort of fittingFE to data may be aimed
mainly or solely at accurately identifying this extremal behaviour of the distribution—including
the probability of exceeding values higher than the maximum of available data.

In the past two decades, it has been claimed (see, e.g., [18, 17, 1]) that a wide range of
natural or social phenomena can be accurately modelled by using so-called ‘heavy-tailed’
power-law distributions in the form

FE(z) = 1− (z/z0)
−a a > 0. (1.1)

A simple distinctive feature of this class of distributions is that the log–log plot of the
complementary cumulative distribution function is a straight line with negative slope−a. Thus,
log–log plots of empirical cumulative distribution which look convincingly close enough to a
straight line make up the main body of statistical evidence produced to support the claim that
power-law distributions are indeed ubiquitous. However, empirical cumulative distribution
functions necessarily exhibit at most a limited quasi-linear regime followed by significant
curvature. In [16], Laherrère and Sornette argued that such departures from the power-law
description should not necessarily be explained by the finite size of the data set, but could
result from a deeper departure from the power-law hypothesis. Using rank-ordering statistics
to back up their claim, they suggested that occurrences of numerous phenomena, ranging from
earthquake death tolls and energies [13, 19] to radio light emissions in galaxies (to which
could be added insurance claims or traffic load in communication networks), apparently fit the
so-called ‘stretched exponential’, or sub-exponential, distribution

FE(z) = 1− exp[−(z/z0)
δ] 0 < δ < 1. (1.2)
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In this paper, we discuss a simple two-parameter class of distribution functions, initially
introduced by Gnedenko [14, 15], whose extremal behaviour can be similar to (1.1), (1.2)
or ‘over-exponential’, i.e. similar to (1.2) but withδ > 1. As a consequence, identifying
the value of the model parameters which fits the data in the best way according to some
sensible criterion would enable, in some restrictive yet objective sense, to decide whether the
phenomenon under study exhibits power-law, subexponential or over-exponential extremal
behaviour. This is an essential feature in the context ofrisk theorywhereE stands for, say,
the annual claim amount and whereruin probabilities are known [7] to be highly dependent
on the light (the Craḿer–Lundberg theory) or heavy character of the claim size.

We next establish limit theorems for rank-ordering statistics which can then be used to
test whether the identified model is compatible with the empirical cumulative distribution as
a whole or with its upper tail only. It turns out that solving both the parameter identification
problem and the compatibility tests is made a lot easier by using the transformationX = logE,
which therefore emerges as the ‘natural’ choice of coordinates for this class of problems.

2. Stochastic energy model

2.1. The Gnedenko model

Consider the class of random variables defined as

E = (s0S)1/δ δ 6= 0 s0 > 0 (2.1)

whereS is an exponentially distributed random variable with mean unity, i.e. with CPDF

FS(s) = 1− exp(−s). (2.2)

The variableE can be seen as the output of some deterministic ‘machine’, with parameters
(δ, s0), triggered by the stochastic source of disorderS [3]. Note that in the language of
statistical physics, the sourceS is the random variable with maximum entropy under the
constraint that its average value is equal to one.

While s0 is simply a scaling factor, the parameterδ defines, roughly speaking, the
way in which the disorder generated by the sourceS is spread or concentrated through the
transformation (2.1) over the positive real axis. For positivez, the density function (DF)
and CPDF ofE are obtained easily by combining (2.1) with (1.1), yielding theGnedenko
distribution:

fE(z) = |δ|
s0
zδ−1 exp

(
− 1

s0
zδ
)

(2.3)

FE(z) = exp

(
− 1

s0
zδ
)

if δ < 0 (2.4)

FE(z) = 1− exp

(
− 1

s0
zδ
)

if δ > 0. (2.5)

Whenδ < 0, E is a Fréchetvariable, also called anexponentially truncated power law[4]
whereas whenδ > 0 it is aWeibullvariable [7]. Depending on the sign ofδ, this distribution
will exhibit very different extremal behaviour. Let us recall [8] that a distribution is said to be
heavy-tailed(or slowly varying) it there exists some finite strictly positive constanta such that

1− FE(z) ∼
z→+∞ z

−aL(z) (2.6)

whereL is some function with regular variation, i.e. such that for all strictly positivet :

lim
z→+∞

L(tx)

L(x)
= 1. (2.7)
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Such distributions only have moments of order less thana. Clearly, whenδ < 0,

1− FE(z) = 1− exp

(
− 1

s0
zδ
)
∼

z→+∞
1

s0
zδ (2.8)

so that theFréchetdistributionFE is heavy-tailed, with only moments of order less than−δ.
Note that when−1 < δ < 0,E does not even have a mean value, i.e., withE the symbol for
mathematical expectation,E(E) = +∞. On the other hand, whenδ > 0,E is special case of
the so-calledVon Mises[7], whose complementary cumulative distributions can be written in
the form

1− FE(z) = [1− FE(z0)] exp

[
−
∫ z

z0

hE(z) dz

]
(2.9)

where thehazard energy densityhE defined by this formula verifies

lim
z→+∞ zhE(z) = +∞. (2.10)

The cumulative distribution of aVon Misesvariable decreases towards zero faster than
hyperbolically, so that these distributions are light-tailed (or rapidly varying). As a
consequence, these variables have moments of arbitrary positive order. If in addition the
functionhE verifies

lim
z→+∞hE(z) = 0 (2.11)

the variableE is said to be sub-exponential; otherwise, it is over-exponential. Whenδ > 0,
we get

hE(z) = δ

s0
zδ−1. (2.12)

Thus, when 0< δ < 1 theWeibull variableE is sub-exponential, whereas forδ > 1 it is
over-exponential.

To compute the meanmE , which as we have noted is defined whenδ > 0 or δ < −1,
let us introduce an auxiliary random variableV distributed according to a gamma DF with
parameter 1 +λ/δ. Then, the DF for the variableU = (s0V )1/δ is

fU(u) = |δ|
s

1+λ/δ
0 0(1 +λ/δ)

uλ+δ−1 exp

(
− 1

s0
uδ
)

1 (u > 0). (2.13)

Using this relation, and noting thatfU is a normalized DF with unitary mass, we get

E(Eλ) =
∫ ∞

0
zλfE(z) dz =

∫ ∞
0

|δ|
s0
zδ+λ−1 exp

(
− 1

s0
zδ
)

dz

= sλ/δ0 0(1 +λ/δ)
∫ ∞

0
fU(u) du = sλ/δ0 0(1 +λ/δ) (2.14)

where0 is Euler’s function. Hence, whenδ > 0 or δ < −1 andλ = 1, the condition
1 +λ/δ > 0 holds, and

mE = s1/δ
0 0(1 + 1/δ). (2.15)

The median value ofE, saymE , defined as the solution ofFE(mE) = 1
2, is

mE = (s0 log 2)1/δ. (2.16)

Finally, the distribution ofE has a non-zero mode only at the condition thatδ(δ − 1) > 0; in
this case, the modem∗E is

m∗E =
(
s0
δ − 1

δ

)1/δ

. (2.17)
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Remark. A remarkable property of theGnedenkodistribution is the following: letEn:n :=
max(E1, . . . , En), E1:n := min(E1, . . . , En) stand for the maximum and minimum ofn IID

copies ofE. Then, for any integern, asδ < 0, n1/δEn:n
d= E, whereas asδ > 0, n1/δE1:n

d= E,

where the symbol
d= means that the random variables have the same distributions. Hence,

Gnedenko distributions aremax–min stable.

2.2. The observable

In many physical situations, the random variableE is not directly observed. Rather, the
observed variable is

X := logE. (2.18)

The distinctive feature of the logarithmic scale is that it measures the distance between
two values through their ratio rather than their difference. Thus, the intensity of noise, as
perceived by the human ear, is usually measured in decibels, i.e. using a logarithmic scale.
Similarly, earthquake magnitude is determined from the logarithm of the amplitude of waves
recorded by seismographs; adjustments are included in the magnitude formula to compensate
for the variation in the distance between the various seismographs and the epicentre of the
earthquake.

Actually, the observed variable should beX = logE +G, whereG is a centered additive
measurement noise, e.g. Gaussian. Note that ifY := eX, Y = E.L, whereL has the lognormal
distribution: were the energies to be reconstituted, they would be polluted by a multiplicative
lognormal noise under such models. However, we shall suppose that the source of error in the
data collecting process is negligible, so thatX = logE is indeed the observable.

Another motivation for working withX rather than withE is that the logarithmic
transformation has a regularizing effect on the distribution’s tail. Most notably, as indicated
above,E does not have a mean when−1< δ < 0, whereas, as we shall see,X always does—
a fact which will be exploited in section 3 to construct an estimator for the distribution’s
parameters(δ, s0).

Elementary calculations yield the DF and PDF for the variableX:

fX(x) = |δ|
s0

exp

(
δx − 1

s0
eδx
)

(2.19)

FX(x) = exp

(
− 1

s0
eδx
)

if δ < 0 (2.20)

FX(x) = 1− exp

(
− 1

s0
eδx
)

if δ > 0. (2.21)

We observe that the density ofX is invariant under the transformation(δ, x)→ (−δ,−x). If
δ < 0, this is the PDF of aFisher–Tippettrandom variable, which is aGumbeldistribution
in the special caseδ = −1 ands0 = 1 [11]. Whenδ > 0, the authors are unaware of any
previous mention of this distribution in the literature.

For all choice of(δ, s0), the variableX is Von Mises’; in addition, it is over-exponential,
which means that the tails of its PDF decrease towards zero at exponential rate or faster at both
extremities,±∞, of the support. Hence, the distribution is ‘thin’, although very asymmetric.

From (2.14), the Laplace transformLX(λ) of X is given by

LX(λ) := E(eλX) = E(Eλ) = sλ/δ0 0(1 +λ/δ). (2.22)

This function is thus defined on the rangeλ > −δ, if δ > 0, andλ < −δ, if δ < 0, therefore
containing the originλ = 0 in any case, as required. As a result, the variableX always
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has convergent moments of arbitrary integral orderp, which can be obtained as theTaylor
coefficients ofLX(λ) atλ = 0. Denoting asγ Euler’s constant, the mean ofX is

mX = E(X) = 1

δ
(logs0 − γ ) ' 1

δ
(logs0 − 0.5772). (2.23)

The median ofX is

mX = 1

δ
(logs0 + log log 2) ' 1

δ
(logs0 − 0.3665). (2.24)

It should be emphasized that the mean and median have a simple expression in terms of the
pair (s0, δ). In addition, (see e.g. [10] for an exploitation of this fact) the distributionX is
always unimodal, and even strongly unimodal, which means that the information function
IX(x) := − logfX(x) is strictly convex; its mode is

m∗X =
1

δ
logs0. (2.25)

An important property of the mean–median–mode trio is that forδ < 0,

mX > mX > m∗X (2.26)

whereas the order should be reversed asδ > 0. Since the empirical mean and median provide
almost surely (a.s.) convergent estimators formX andmX, they can be used to decide whether
δ is negative or positive, i.e. whether the distribution ofE is heavy or light-tailed. Also, since
we are dealing with a two-parameters family of distributions, these a.s. convergent estimators
will provide an estimator of the pair(δ, s0). This estimation problem will be discussed in the
next section.

3. Parameter estimation problem

Let us consider the problem of deciding whether, and for what choice of the parameter
pair (s0, δ), the distribution functionFX is a good statistical model for a particular data set
(x1, x2, . . . , xn); or equivalently, whetherFE is a good model for the data set(ex1, ex2, . . . ,exn).
As mentioned in the introduction, the solution advocated here will be a two-step procedure. The
first step, discussed in this section, is to identify the value of the parameter pair(s0, δ) under the
hypothesis that(x1, x2, . . . , xn) is a realization of an IID sequenceXn1 := (X1, X2, . . . , Xn)

with PDF FX. The second step, discussed in section 4, is to decide whether the identified
distribution fits the data.

Because the domain of interest forδ, and thus for the parameter pair(s0, δ), is non-convex,
one needs to distinguish between the two situationsδ > 0 andδ < 0, and thus fit(s0, δ) under
the alternative hypothesisδ > 0 andδ < 0. One possible approach would be to compute
the maximum likelihood estimator for(s0, δ). This estimator is defined as the value of the
parameter pair(ŝn, δ̂n) which maximizes the likelihood functionLn := ∏n

m=1 fX(xm); the
corresponding distribution, whenever it exists, is precisely the one for which the realization
(x1, x2, . . . , xn) is the more likely to occur [5]. In this case, the maximum likelihood estimator
could be obtained as follows: compute the two maximum likelihood estimators(ŝ+

0,n, δ̂
+
n)

and (ŝ−0,n, δ̂
−
n ) maximizing the likelihood function under the hypothesisδ > 0 andδ < 0,

evaluate the corresponding candidate maximaL+
n = Ln(ŝ+

0,n, δ̂
+
n) andL−n = Ln(ŝ−0,n, δ̂−n ), and

then retain the best of the two, i.e.(ŝn, δ̂n) = (ŝ+
0,n, δ̂

+
n) if L+

n > L−n , (ŝ0,n, δ̂n) = (ŝ−0,n, δ̂
−
n )

otherwise. However, it turns out that we have no guarantee that the likelihood functionLn
attains its maximum at some point inside its domain, which is unfortunately open, so that
the very maximum likelihood approach may not make sense; furthermore, we cannot even
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guarantee that the likelihood functionLn is convex into the two regionsδ > 0 andδ < 0, so
that it could be difficult to compute in a reliable way the maxima ofLn in these two domains,
should they exist.

An alternative approach is to substitute the empirical mean and median of the sample
(X1, X2, . . . , Xn) in (2.23) and (2.24), and to solve these equations in(s0, δ).

Denote asXn the cumulative sum of the sample, i.e.

Xn =
n∑

m=1

Xm (3.1)

and asXn:n
1:n := (X1:n, . . . , Xn:n) the ordered version ofXn1, which means

X1:n < · · · < Xm:n < · · · < Xn:n (3.2)

so that the empirical mean and median are, respectively,1
n
Xn andX[n/2]:n.In this way, we

obtain the estimator:

ŝ0,n = exp

[
γX[n/2]:n + log log 21

n
Xn

X[n/2]:n − 1
n
Xn

]
(3.3)

δ̂n = γ + log log 2

X[n/2]:n − 1
n
Xn
. (3.4)

Note that the mode (most probable state) is therefore estimated to be located at

1

δ̂n
log ŝ0,n =

γX[n/2]:n + log log 2. 1
n
Xn

γ + log log 2
. (3.5)

Note that the sign of̂δn, which controls the heavy or light nature of the tail for the original
variableE, depends on the relative position of the empirical mean and median. This provides
a simple test for the extremal behaviour ofE. However, the empirical median cannot be
computed recursively, which is a minor drawback in ‘dynamical’ situations where the sample
size increases.

4. Model-data fitness

The adequacy of the identified distribution corresponding to(ŝ0,n, δ̂n) with the empirical
distribution can be tested from three different point of views, depending on what practical
questions the model is supposed to answer: globally (Kolmogorov–Smirnovtest); in the central
body of the data (order statistics); for its tails (statistics of extremes). The statistics associated
with these tests is based on the ordered sample(X1:n, . . . , Xn:n) and on the quantile distribution
function (QDF) ofX:

F−X (p) := inf (x : FX(x) > p). (4.1)

This QDF is easily computed from (2.20) and (2.21):

F−X (p) =
1

δ
log[−s0 log(p)] if δ < 0 (4.2)

F−X (p) =
1

δ
log[−s0 log(1− p)] if δ > 0. (4.3)
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4.1. Kolmogorov–Smirnov test

The Kolmogorov–Smirnovtest [2] enables one to decide whether an IID sampleXn1 =
(X1, X2, . . . , Xn) has been generated with some guessed (theoretical) probability distribution
functionFX. Denote respectively asFn andF−n the empirical PDF and QDF of the sample,
i.e.

Fn(x) := 1

n

n∑
m=1

1(Xm:n 6 x) (4.4)

F−n (p) := inf (x : Fn(x) > p). (4.5)

TheKolmogorov–Smirnovtest is based on the random variable

sup
x

|Fn(x)− FX(x)| (4.6)

which measures some distance between the empirical and theoretical PDFs. Using the
transformationx = F−X (p), this is also

sup
p∈[0,1]

|FUn (p)− p| (4.7)

whereFUn is the empirical PDF of an IID uniform sequence on the interval(0, 1), so that

FUn (p) := Fn(F−X (p)) =
1

n

n∑
m=1

1(Um:n 6 x) (4.8)

with Um:n := FX(Xm:n). Using this notation, it is shown that

√
n sup
p∈[0,1]

|FUn (p)− p|
d→

n↑∞
M (4.9)

where the variableM is the absolute supremum of aBrownianbridge which admits the PDF

FM(z) = 1− 2
∑
k>1

(−1)k−1 exp(−2k2z2). (4.10)

Hence, searching for the level valueγn(α) such that

P

{
sup
p∈[0,1]

|FUn (p)− p| > γn(α)

}
= α (4.11)

for smallα (sayα = 0.05) yields

γn(α) ' 1√
n

[
log(2/α)

2

]1/2

. (4.12)

Thus, theKolmogorov–Smirnovtest works as follows: (a) transform the original sample into
Un

1 := (FX(X1), . . . , FX(Xn)); (b) compute

max
m=1,...,n

|m/n− Um:n| = sup
p∈[0,1]

|FUn (p)− p| (4.13)

(c) if this number exceedsγn(α), reject the hypothesis that the sample has been generated with
the theoretical PDFFX(x), otherwise accept it.α is the probability to decide that the sample
is not a realization of the distributionFX when it really is.

Related tests, such as the range test and the energy test, are also available [9].
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4.2. Rank-ordering statistics

As the sample sizen increases, one would expect that themth largest component, the ordered
sample(X1:n, . . . , Xn:n) converges, towardsF−X (m/n). In fact, this holds true only on the
condition that min(m, n − m) → ∞, which in practical terms means the ‘central body’ of
the sample, excluding the smallest and largest quantiles for which different asymptotic results
hold (see below). It is well known [6] that the joint probability density of the ordered sample
(X1:n, . . . , Xn:n) is

fX1:n,...,Xn:n (x1, . . . , xn) = n!
n∏

m=1

fX(xm)1(x1 < · · · < xn). (4.14)

The marginal distribution ofXm:n can be derived from the observation that the events
{Xm:n 6 x} and {Bn(x) > m} coincide, whereBn(x) := ∑n

m=1Bm(x) is the binomial
cumulative sum of the IID Bernoulli series with general term

Bm(x) := 1(Xm 6 x) m = 1, . . . , n. (4.15)

Consequently,Bn(x) is a binomial variable with meannFX(x) and variancenFX(x)(1 −
FX(x)). As a result, the PDF ofXm:n is

FXm:n (x) =
n∑
l=m

(
n

l

)
FX(x)

l(1− FX(x))n−l . (4.16)

From the central limit theorem

Bn(x)− nFX(x)√
nFX(x)(1− FX(x))

d→
n↑∞
N (0, 1) (4.17)

one can easily deduce that, as min(m, n−m)→∞,

X̃m:n :=
√
nfX(F

−
X (m/n))√

m/n(1−m/n) [Xm:n − F−X (m/n)]
d→ N (0, 1) (4.18)

whereN (0, 1) denotes the Gaussian distribution with zero mean and unitary variance. Thus,
there exists a rescaled adjusted version ofXm:n, which converges in distribution to a normal
variable. Here the scaling function (or local fluctuation) is√

m/n(1−m/n)√
nfX(F

−
X (m/n))

(4.19)

which tends to zero under the considered asymptotics. A special case of interest ism := [n/2].
For large values ofn, F−X ([n/2]/n) ∼ F−X ( 1

2) is the theoretical median, so that the empirical
medianX[n/2]:n verifies

2
√
nfX(F

−
X (

1
2))[X[n/2]:n − F−X ( 1

2)]
d→

n↑∞
N (0, 1). (4.20)

These results can be extended to a multi-dimensional ordered sequence of given sizek

belonging to the central body of the data. Let 16 m1 < · · · < mk 6 n be some increasing
sequence of integers. Reasoning along the same lines as above, the joint PDF of the vector
Xmk :n := (Xm1:n, . . . , Xmk :n)

′ can be derived from the multinomial character of the vector
Bn(xk) := (Bn(x1), . . . , Bn(xk))

′
, and is given by

FXm1:n,...,Xmk:n (x1, . . . xk) =
n∑

l1=m1

. . .

n∑
lk=mk

n!∏k
j=1 lj !(n−

∑k
j=1 lj )!

×
k∏
j=1

FX(xj )
lj

(
1−

k∑
j=1

FX(xj )

)n−∑k
j=1 lj

. (4.21)
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On the condition that min16j6k[min(mj , n − mj)] → ∞, the vectorXmk :n :=
(Xm1:n, . . . , Xmk :n)

′ converges towards the multi-dimensional QDFF−X (mk/n) :=
(F−X (m1/n), . . . , F

−
X (mk/n))

′. More precisely, we get the following asymptotic behaviour:

X̃mk :n := √n[diagfX(F
−
X (mk/n))]H(mk/n)

−1/2(Xmk :n − F−X (mk/n))
d→

n↑∞
N (0, 1k)

(4.22)

where1k the k × k identity matrix and diagfX(F
−
X (mk/n)) is the diagonal matrix with

fX(F
−
X (mi/n)) as(i × i)—entry,i = 1, . . . , k.

In addition, the covariance matrixH(mk/n) which appears in the previous equation is
defined by

H(mk/n)i,j := −(mi/n) · (mj/n) if i 6= j (4.23)

H(mk/n)i,i := (mi/n) · (1−mi/n). (4.24)

Thus, under the hypothesis thatXn1 := (X1, . . . , Xn) is an IID sequence with common PDF
FX,

‖X̃mk :n‖22
d→

n↑∞
χ2
k (4.25)

whereχ2
k is a Chi-2 variable withk degrees of freedom.

Using (4.22), one can test whether the sample is compatible with the ‘central body’ of the
distributionFX as follows: (a) select a sequence 16 m1 < · · · < mk 6 n; (b) evaluate the
rescaled statistics̃Xmk :n; (c) select a levelα and determine the level valueγn(α) for which
P {χ2

k > γn(α)} = (α; c) if ‖X̃mk :n‖22 > γn(α), reject the hypothesis that the bulk of the
sample has been generated with the theoretical PDFFX(x), otherwise accept it.

Remark. It follows from these formulae that tests which are based on such rank ordering
statistics only concern the ‘central body’ of the data, not the extremes. Indeed, the central
limit theorem holds in the asymptoticsinf (m, n − m) → ∞. Thus, bothn and the rank
m should tend to infinity, for examplen → ∞, m → ∞, with the ratiom/n held fixed at
α ∈ (0, 1). These results are invalid in the extreme ends of the sample, as nothing has been
said so far, concerning the asymptoticsn→∞,m→∞, withm+p = n for p a fixed integer
(in particular p = 0).

For this part of the data, the Fisher–Tippett theorem is the key tool for limit theorems. We
examine the part of this problem of interest to our purposes in the following.

4.3. Statistics of extremes

First observe the obvious fact thatXn:n
a.s.→ +∞, asn ↑ ∞. This observation does not enclose

too much information and one would like a deeper insight on how the order of magnitude of the
maximum evolves, asn ↑ ∞. This can be done by defining the level valuex∗n(γ ) associated
with a small positiveγ (sayγ = 0.05) as the solution of

n[1− FX(x∗n(γ ))] = γ. (4.26)

Equivalently,x∗n(γ ) can be defined as the solution of

P {Xn:n > x∗n(γ )} = 1− e−γ . (4.27)

Knowledge ofx∗n(γ ) can be important in applications. Take the example of the hydrologist
(or telecommunication engineer) whose problem is to dimension a dam (or a buffer) when the
random inputs to their system are assumed to form an IID sequence. They might be interested
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by designing a dam (a buffer) whose height (size),x∗n(γ ), is such that the overflow probability
ρ := 1− e−γ over the laps of timen is small. Thusx∗n(γ ) is an excessively high value for the
n-sample.

WhenFX is aVon Misesdistribution, it is well known [12] that the asymptotic behaviour
for the fluctuation of the difference betweenx∗n(γ ) and the sample maximumXn:n = max(Xn1)
whenn ↑ ∞ is given by

hX[x∗n(γ )][Xn:n − x∗n(γ )]
d→

n↑∞
Gγ (4.28)

wherehX is the hazard energy density of theVon Misesdistribution ofX andGγ is theGumbel
variable with DF

fGγ
(t) = γ exp[−(t + γe−t )]. (4.29)

Note that from (2.20) and (2.21), the explicit form of the hazard energy densityhX is

hX(x) = −
δ exp

(
δx − 1

s0
eδx
)

s0

[
1− exp

(
− 1
s0

eδx
)] if δ < 0 (4.30)

hX(x) = δ

s0
exp(δx) if δ > 0 (4.31)

for which it can be checked theVon Misesproperty thatxhX(x) → ∞ whenx ↑ ∞; in
addition,hX does not vanish at infinity, in any case (X is over-exponential).

The proof for this result can easily be extended to obtain the asymptotic behaviour for the
(n− p)th largest valueXn−p:n. The motivation for using such statistics is that the maximum
is highly sensitive to ‘outliers’, i.e. abnormally high values in the sample resulting from errors
in the data collection process such as typing errors. In practice, one should therefore select a
value ofp such that(n− p)/n ' 1 and thatp/n is higher than the occurrence probability of
an outlier.

Definex∗n,p(γ ) as the solution of

(n− p)[1− FX(x∗n,p(γ ))] = γ. (4.32)

Then, asn ↑ ∞
hX[x∗n,p(γ )][Xn−p:n − x∗n,p(γ )]

d→
n↑∞

Gγ,p (4.33)

whereGγ,p has the density

fGγ,p
(t) = γ p+1

p!
exp(−[(p + 1)t + γe−t ]). (4.34)

We now briefly indicate how these results can be used in practice. Fix a small real
number, sayα = 0.05. We would like to compute the numberεn(α, γ ) defined by
P {|Xn−p:n − x∗n,p(γ )| > εn,p(α, γ )} = α. The numberεn(α, γ ) is therefore the radius of
the ball centreed atx∗n,p(γ ) which is likely (at levelα) to enclose the(n − p)th largest value
Xn−p:n.

From (4.33),εn,p(α, γ ) can be effectively computed by

P {|Gγ,p| > εn,p(α, γ )hX[x∗n,p(γ )]} = α. (4.35)

This construction therefore yields an approximation of the width of the confidence interval of
the maximum aroundx∗n,p(γ ). These constructions exhibit two parameters under control of the
modeller. The first one,γ , which appears in the definition ofx∗n,p(γ ) is needed to decide what
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Figure 1. Histogram of magnitude measurements—Richter scale.

an excessively high value for the dataXn1 is. The second,α, is needed to design a confidence
interval aroundx∗n,p(γ ).

To summarize, the test works as follows: (a) selectp and evaluateXn−p:n; (b) selectγ and
α, and determine the level valueεn,p(α, γ ) for which (4.35) holds; (c) if|Xn−p:n− x∗n,p(γ )| >
εn,p(α, γ ), reject the hypothesis that the tail of the sample has been generated with the
theoretical PDF FX(x), otherwise accept it.

5. A parochial experiment

The procedure described above was tested on earthquake magnitude data obtained from the
Northern California Earthquake Data Center (NCEDC). The data set comprised all earthquakes
recorded from November 1995 to October 1998 in a polygon corresponding roughly to the
boundaries of metropolitan France, excluding Corsica. November 1995 was chosen as a
starting point because prior to this date, this catalogue apparently assigned a magnitude of
one to all recorded small earthquakes. Records of earthquake magnitude are well suited to
our purposes because of the logarithmic basis of the scale. However, on the Richter scale,
magnitude is expressed in whole numbers and decimal fractions. This round-up effect makes
the raw data inconsistent with any continuous model of the probability distribution function.
To overcome this minor obstacle, we regularized the data by adding to each recorded value an
IID random noise uniformly distributed in the range (−0.05–0.05 ).

The sample containedn = 3245 recorded events ranging from 0.3 to 5.0 on the Richter
scale. There seems to be roughly 1000 registered events per year. The histogram for the raw
data is presented in figure 1, showing an asymmetrical distribution which seems consistent
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Figure 2. Estimated DF and normalized empirical histogram.

with aGumbelmodel. The empirical mean and median for the regularized sampleXn1 are:

1

n
Xn ' 2.2399 X[n/2]:n ' 2.1577. (5.1)

In addition, the estimated most probable value forX is from (3.5)

1

δ̂n
log ŝ0,n ' 2.0148. (5.2)

Applying the estimation procedure in section 3, we get using (3.3) and (3.4)

ŝ0,n ' 5.7103× 10−3 δ̂n = −2.5638. (5.3)

As a result, thereis statistical evidence that the estimated distribution for the energy ratio
E = exp(X) is heavy-tailed, but with convergent moments of order less than 2.5638 (including
the mean and variance).

Figure 2 shows the estimated DF versus the normalized empirical histogram. The fit
appears good, except, maybe, for the lowest values ofX. In our opinion, this reflects the fact
that earthquakes of very small magnitude (microearthquakes are of magnitude lower than one
on the Richter scale) may elude detection.

Proceeding to the model-data fitness tests of section 4, we first compute theKolmogorov–
Smirnovstatistics in (4.13)

max
m=1,...,n

|m/n− Um:n| = sup
p∈[0,1]

|FUn (p)− p| ' 1.6952× 10−2 (5.4)

to be compared, for the riskα = 0.05, with the level value

γn(α) ' 1√
n

[
log(2/α)

2

]1/2

' 2.3841× 10−2. (5.5)
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Figure 3. Ordered sample versus quantile function.

Therefore, the hypothesis that the sample has been generated, as a whole, with the theoretical
PDF FX(x) in (2.20) with parameters

(ŝ0,n, δ̂n) = (5.7103× 10−3,−2.5638) (5.6)

should be accepted.
We now perform a rank-ordering test for the central body of the sample, following

section 4.2. We extracted a subsample of sizek = 80 with indicesmj ranging fromm1 = 500
tom80 = 2870, with a step ofmj–mj−1 = 30. Using (4.22)–(4.24), we computed the statistics

‖X̃mk :n‖22 ' 43.667. (5.7)

These statistics are to be compared with the level which a Chi-2 variable withk = 80 degrees
of freedom has probabilityα = 0.05 of exceeding. We found

P {χ2
80 > 101.9} ' 0.05. (5.8)

Therefore, the hypothesis that the ordered subsampleXmk :n := (Xm1:n, . . . , Xmk :n)
′ has been

generated with the theoretical PDFFX(x) with parameters(ŝ0,n, δ̂n) should be accepted. To
support this result, the ordered sample has been plotted against the quantile distribution function
{F−X (m/n),m = 1, . . . , n} (figure 3). This plot reveals, as expected, a misfit for both the lowest
and highest quantiles. On the contrary, the fitness seems reasonably good for the central part
of the data.

To test the goodness of the fit for the upper tail of the distribution, according to the
procedure in section 4.3, we choose to consider the statistics for the empirical maximum
(p = 0), assuming the probability of occurrence of an outlier in the data to be zero. In this
case, the presence of outliers would mean that the database includes nonexistent comparatively
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Figure 4. Estimated average time before next earthquake of magnitude exceedingx.

large earthquakes, which appears highly unlikely. We first need to compute, forγ = 0.05, the
valuex∗n(γ ) defined by (4.26), and find

x∗n(γ ) ' 6.3367. (5.9)

Recall that the maximum of an IID sample with distributionFX and sizen has probability
1−exp(−γ ) ' 0.05 of exceeding this ‘excessively high’ value for then-sample. The empirical
maximumXn:n of the sample is 5.0, so that

|Xn:n − x∗n(γ )| ' 1.3367. (5.10)

This statistics should be compared with the solutionεn,0(α, γ ) of

P {|Gγ | > εn,0(α, γ )hX[x∗n(γ )]} = α = 0.05 (5.11)

with

P {|Gγ | > t} = 1− exp(−γe−t ) + exp(−γet ). (5.12)

For this value ofγ , we find

εn,0(α, γ ) ' 1.6 (5.13)

so that the hypothesis that the tail of the sample has been generated with the theoretical PDF
FX(x) with parameters(ŝ0,n, δ̂n) should also be accepted.

An obvious question of interest is: how long should one wait before the next earthquake
of magnitude greater than a given level? In [20], this problem is addressed through a detailed
statistical study of the time separating two consecutive events. A more pedestrian approach is
to compute the ‘mean time between failure’, which is defined as

Nx := inf (n : Xn > x) (5.14)
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for some magnitude levelx. Assuming that the number of earthquakes per year is constant,
equal ton/3 ' 1082, the estimated average number of years one would have to wait before
the next earthquake of magnitude greater thanx is therefore

E{Nx}
n/3

= 3

n[1− FX(x)] . (5.15)

Figure 4 presents this estimated average time as a function of the magnitude, zooming in the
extreme range 56 x 6 9. In order to interpret such plots, one should recall that magnitudes
exceedingx = 8 correspond to very large and rare events (on average, one earthquake of such
size occurs somewhere in the world each year). Interestingly, an earthquake of magnitude
x = 6.4, which is very unlikely to occur in France according to (4.26), should occur on
average every 70 years or so.
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